中金:AI端侧落地加速 关注操作系统升级及应用前景

发布时间 2024-5-17 07:56
更新时间 2024-5-17 08:05
© Reuters.  中金:AI端侧落地加速 关注操作系统升级及应用前景
UNIs/USD
-
WINK/USD
-

智通财经APP获悉,中金发布研究报告称,本周Open AI与谷歌分别发布新一代模型:GPT-4o和Gemini系列模型。该行认为,随着AI在端侧的逐渐落地,将带动消费电子终端创新升级,并对云端算力硬件系统尤其是推理侧需求提出更高要求。

中金主要观点如下:

Gemini 1.5 Pro与GPT-4o有何异同?

我们认为,GPT-4o是端到端模型的创新,带来人机交互方式新突破;谷歌Gemini性能升级,AI能力广泛接入旗下生态。对比来看,两者都是原生多模态大模型,有望引发行业的效仿热情,原生多模态或成为未来发展趋势;但差异点在于,Gemini上下文窗口更大,且定价更具吸引力;GPT-4o模型性能更强,且更强调实际应用场景中的人机交互创新。

AI端侧落地带来消费电子终端人机交互方式变革,关注操作系统升级及应用前景。

在硬件侧,我们认为,此次两大模型发布从四个方面加快了AI落地端侧的进度:1)多模态交互方式革新;2)AI语音助手拟人化;3) AI功能在移动设备的应用前景;4)商业化前景。虽然当前大模型仍以云端算力调用为主,但从当前各家在模型参数压缩的努力,结合端侧商业变现的前景,未来部分算力下沉到端侧将成为必由之路,对应消费电子终端在硬件层面也将迎来创新升级。在操作系统及应用侧,语音助手拟人化程度提升,一方面使AI agent成为可能,另一方面未来交互方式变化或带来流量入口变化,深刻影响生态格局。

云端算力硬件:GPT-4o部分功能的免费开放,Gemini能力的提升或对单位算力成本下探提出要求,AI infra面临大幅优化。

我们看到,当下行业对算力硬件性能、成本的衡量以训练导向逐渐转为推理导向。除了芯片端、网络硬件端(如光模块)持续升级外,系统工程能力也正不断强化:为获得更低的硬件利用率,降低推理成本,优化显存、实施算子融合/算子实现优化、低精度(量化)推理、分布式推理均是主流实现方式。我们认为算力硬件市场有望随应用落地步入以价换量时代,市场规模或将持续增长。

风险

AI算法技术及应用落地进展不及预期,AI变现模式不确定,消费电子智能终端需求低迷。

最新评论

风险批露: 交易股票、外汇、商品、期货、债券、基金等金融工具或加密货币属高风险行为,这些风险包括损失您的部分或全部投资金额,所以交易并非适合所有投资者。加密货币价格极易波动,可能受金融、监管或政治事件等外部因素的影响。保证金交易会放大金融风险。
在决定交易任何金融工具或加密货币前,您应当充分了解与金融市场交易相关的风险和成本,并谨慎考虑您的投资目标、经验水平以及风险偏好,必要时应当寻求专业意见。
Fusion Media提醒您,本网站所含数据未必实时、准确。本网站的数据和价格未必由市场或交易所提供,而可能由做市商提供,所以价格可能并不准确且可能与实际市场价格行情存在差异。即该价格仅为指示性价格,反映行情走势,不宜为交易目的使用。对于您因交易行为或依赖本网站所含信息所导致的任何损失,Fusion Media及本网站所含数据的提供商不承担责任。
未经Fusion Media及/或数据提供商书面许可,禁止使用、存储、复制、展现、修改、传播或分发本网站所含数据。提供本网站所含数据的供应商及交易所保留其所有知识产权。
本网站的广告客户可能会根据您与广告或广告主的互动情况,向Fusion Media支付费用。
本协议的英文版本系主要版本。如英文版本与中文版本存在差异,以英文版本为准。
© 2007-2025 - Fusion Media Limited | 粤ICP备17131071号 | 保留所有权利。